372 research outputs found

    Matching Subsequences in Trees

    Full text link
    Given two rooted, labeled trees PP and TT the tree path subsequence problem is to determine which paths in PP are subsequences of which paths in TT. Here a path begins at the root and ends at a leaf. In this paper we propose this problem as a useful query primitive for XML data, and provide new algorithms improving the previously best known time and space bounds.Comment: Minor correction of typos, et

    Visual exploration and retrieval of XML document collections with the generic system X2

    Get PDF
    This article reports on the XML retrieval system X2 which has been developed at the University of Munich over the last five years. In a typical session with X2, the user first browses a structural summary of the XML database in order to select interesting elements and keywords occurring in documents. Using this intermediate result, queries combining structure and textual references are composed semiautomatically. After query evaluation, the full set of answers is presented in a visual and structured way. X2 largely exploits the structure found in documents, queries and answers to enable new interactive visualization and exploration techniques that support mixed IR and database-oriented querying, thus bridging the gap between these three views on the data to be retrieved. Another salient characteristic of X2 which distinguishes it from other visual query systems for XML is that it supports various degrees of detailedness in the presentation of answers, as well as techniques for dynamically reordering and grouping retrieved elements once the complete answer set has been computed

    New constraints on the formation and settling of dust in the atmospheres of young M and L dwarfs

    Full text link
    We obtained medium-resolution near-infrared spectra of seven young M9.5-L3 dwarfs classified in the optical. We aim to confirm the low surface gravity of the objects in the NIR. We also test whether atmospheric models correctly represent the formation and the settling of dust clouds in the atmosphere of young late-M and L dwarfs. We used ISAAC at VLT to obtain the spectra of the targets. We compared them to those of mature and young BD, and young late-type companions to nearby stars with known ages, in order to identify and study gravity-sensitive features. We computed spectral indices weakly sensitive to the surface gravity to derive near-infrared spectral types. Finally, we found the best fit between each spectrum and synthetic spectra from the BT-Settl 2010 and 2013 models. Using the best fit, we derived the atmospheric parameters of the objects and identify which spectral characteristics the models do not reproduce. We confirmed that our objects are young BD and we found NIR spectral types in agreement with the ones determined at optical wavelengths. The spectrum of the L2-gamma dwarf 2MASSJ2322-6151 reproduces well the spectrum of the planetary mass companion 1RXS J1609-2105b. BT-Settl models fit the spectra and the 1-5 μ\mum SED of the L0-L3 dwarfs for temperatures between 1600-2000 K. But the models fail to reproduce the shape of the H band, and the NIR slope of some of our targets. This fact, and the best fit solutions found with super-solar metallicity are indicative of a lack of dust, in particular at high altitude, in the cloud models. The modeling of the vertical mixing and of the grain growth will be revised in the next version of the BT-Settl models. These revisions may suppress the remaining non-reproducibilities.Comment: Accepted in A&A, February 6, 201

    Light-Cone Quantization of Gauge Fields

    Get PDF
    Light-cone quantization of gauge field theory is considered. With a careful treatment of the relevant degrees of freedom and where they must be initialized, the results obtained in equal-time quantization are recovered, in particular the Mandelstam-Leibbrandt form of the gauge field propagator. Some aspects of the ``discretized'' light-cone quantization of gauge fields are discussed.Comment: SMUHEP/93-20, 17 pages (one figure available separately from the authors). Plain TeX, all macros include

    The Tree Inclusion Problem: In Linear Space and Faster

    Full text link
    Given two rooted, ordered, and labeled trees PP and TT the tree inclusion problem is to determine if PP can be obtained from TT by deleting nodes in TT. This problem has recently been recognized as an important query primitive in XML databases. Kilpel\"ainen and Mannila [\emph{SIAM J. Comput. 1995}] presented the first polynomial time algorithm using quadratic time and space. Since then several improved results have been obtained for special cases when PP and TT have a small number of leaves or small depth. However, in the worst case these algorithms still use quadratic time and space. Let nSn_S, lSl_S, and dSd_S denote the number of nodes, the number of leaves, and the %maximum depth of a tree S∈{P,T}S \in \{P, T\}. In this paper we show that the tree inclusion problem can be solved in space O(nT)O(n_T) and time: O(\min(l_Pn_T, l_Pl_T\log \log n_T + n_T, \frac{n_Pn_T}{\log n_T} + n_{T}\log n_{T})). This improves or matches the best known time complexities while using only linear space instead of quadratic. This is particularly important in practical applications, such as XML databases, where the space is likely to be a bottleneck.Comment: Minor updates from last tim

    Light-Front Quantisation as an Initial-Boundary Value Problem

    Full text link
    In the light front quantisation scheme initial conditions are usually provided on a single lightlike hyperplane. This, however, is insufficient to yield a unique solution of the field equations. We investigate under which additional conditions the problem of solving the field equations becomes well posed. The consequences for quantisation are studied within a Hamiltonian formulation by using the method of Faddeev and Jackiw for dealing with first-order Lagrangians. For the prototype field theory of massive scalar fields in 1+1 dimensions, we find that initial conditions for fixed light cone time {\sl and} boundary conditions in the spatial variable are sufficient to yield a consistent commutator algebra. Data on a second lightlike hyperplane are not necessary. Hamiltonian and Euler-Lagrange equations of motion become equivalent; the description of the dynamics remains canonical and simple. In this way we justify the approach of discretised light cone quantisation.Comment: 26 pages (including figure), tex, figure in latex, TPR 93-

    Characterization of the Benchmark Binary NLTT 33370

    Full text link
    We report the confirmation of the binary nature of the nearby, very low-mass system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity sensitive alkali lines and strong lithium 6708 Angstrom absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity sensitive features and spectral morphology that is consistent with other young, very low-mass dwarfs. We combine the constraints from all age diagnostics to estimate a system age of ~30-200 Myr. The 1.2-4.7 micron spectral energy distribution of the components point toward T_eff=3200 +/- 500 K and T_eff=3100 +/- 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 113 +/- 8 M_Jup and 106 +/- 7 M_Jup from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the Solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and very low-masses.Comment: 25 pages, 3 tables, 13 figures, accepted for publication in The Astrophysical Journa

    Transiting Exoplanet Yields for the Roman Galactic Bulge Time Domain Survey Predicted from Pixel-Level Simulations

    Full text link
    The Nancy Grace Roman Space Telescope (Roman) is NASA's next astrophysics flagship mission, expected to launch in late 2026. As one of Roman's core community science surveys, the Galactic Bulge Time Domain Survey (GBTDS) will collect photometric and astrometric data for over 100 million stars in the Galactic bulge to search for microlensing planets. To assess the potential with which Roman can detect exoplanets via transit, we developed and conducted pixel-level simulations of transiting planets in the GBTDS. From these simulations, we predict that Roman will find between ∼\sim60,000 and ∼\sim200,000 transiting planets, over an order of magnitude more planets than are currently known. While the majority of these planets will be giants (Rp>4R⊕R_p>4R_\oplus) on close-in orbits (a<0.3a<0.3 au), the yield also includes between ∼\sim7,000 and ∼\sim12,000 small planets (Rp<4R⊕R_p<4 R_\oplus). The yield for small planets depends sensitively on the observing cadence and season duration, with variations on the order of ∼\sim10-20% for modest changes in either parameter, but is generally insensitive to the trade between surveyed area and cadence given constant slew/settle times. These predictions depend sensitively on the Milky Way's metallicity distribution function, highlighting an opportunity to significantly advance our understanding of exoplanet demographics, particularly across stellar populations and Galactic environments.Comment: Accepted to ApJS; 64 pages, 18 figure
    • …
    corecore